

EXAM DATE.: 01-05-2025 AN (2:00PM TO 5:00PM)

MATHS

1.	If $f: R \rightarrow R$ such that $f(x + f(2) = 8$ then $f(20) - f(10)$	y) - kxy = f(x) + 2	$y^2 \ \forall x, y \in R \ and f$	f(1) = 2,	
	1)600 2)300		3) 60	4)200	
2.	The maximum possible doma	ain and the correspo	onding range for f	$f(x) = (-1)^x$ are	
	1) $D_f = R, R_f = [-1,1]$ 2) I	$D_f = Z, R_f = \{-1, 1\}$	3) $D_f = Z, R_f =$	$= \begin{bmatrix} -1,1 \end{bmatrix} 4) D_f = R,$	$\boldsymbol{R}_f = \{-1, 1\}$
3.	Sum of the series $S = 1 + \frac{1}{2}$	$(1+2) + \frac{1}{3}(1+2+3) + \frac{1}{3}(1+2+3)$	$+\frac{1}{4}(1+2+3+4)$	up to 20 terms is	
	1) 110 2) 11	1 3)	115	4)116	
	1 1 1				
4.	If $D = \begin{vmatrix} 1 & 1+x & 1 \end{vmatrix}$ for x	$\neq 0, y \neq 0$ then D is			
	1 1 1 + y				
	1) divisible by neither x nor	V	2) divisi	ble by both x and y	
	3) divisible x but not y)	4) divisi	ible by y but not x	
5.	Let P and O be 3x3 matrices	with $P \neq O$. If P^3	$= O^3$ and $P^2 O = O$	$p^2 P$, then determinate	e of $P^2 + O^2$ is
	1)0 2) -1	~ 5	$\frac{2}{3}$ -2 $\frac{2}{2}$	4) 1	~
6.	If the system of equations x	= cy + bz, y = az + c	cx, z = bx + ay has a	a non -zero solutions	s then
	$a^{2} + b^{2} + c^{2} + 2abc$ is				
	1)0 2) 1		3) 2	4) 5	
7.	If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} x & 1 \\ y & -1 \end{bmatrix}$	$\left] and \left(A+B \right)^2 = A^2 \right.$	$+B^2$ then (x,y) is		
	1) (1,4) 2)(2,1)		3) (3,3)	4) (0,1)	
8.	If I is the centre of a circle in	nscribed in a triangl	e ABC, then $\left \overline{BC} \right $	$\overline{IA} + \left \overline{CA}\right \overline{IB} + \left \overline{AB}\right \overline{IC}$	' is
	1) $\overline{0}$ 2) $\overline{IA} + \overline{IB} + \overline{A}$	\overline{IC} 3)	$\frac{IA+IB+IC}{3}$	4) None	
9.	If $\overline{i} + 2\overline{j} + 3\overline{k}, 3\overline{i} + 2\overline{j} + \overline{k}$ are	sides of a parallelo	gram, then a unit v	vector parallel to one	of the diagonals
	of a parallelogram is	-	-	-	_
	1) $\frac{\overline{i}+\overline{j}+\overline{k}}{\sqrt{3}}$ 2) $\frac{\overline{i}-\overline{j}+\overline{j}}{\sqrt{3}}$	k	3) $\frac{\overline{i}+\overline{j}-\overline{k}}{\sqrt{3}}$ 4) $\frac{-\overline{i}}{\sqrt{3}}$	$\frac{\overline{j}+\overline{k}}{\sqrt{3}}$	
10.	The angle between the lines	$\overline{r} = \left(2\overline{i} - 3\overline{j} + \overline{k}\right) + \lambda$	$\left(\overline{i}+4\overline{j}+3\overline{k}\right)$ and	$\overline{r} = \left(\overline{i} - \overline{j} + 2\overline{k}\right) + \mu\left(\overline{i}\right)$	$(+2\overline{j}-3\overline{k})$ is
	1) $\cos^{-1}\left(\frac{9}{\sqrt{91}}\right)$	$2) \cos^{-1}\left(\frac{7}{\sqrt{84}}\right)$	3	$\frac{\pi}{3}$	4) $\frac{\pi}{2}$
11.	The perpendicular distance	from $A(1, 4, -2)$ to t	he line BC, where	B(2,1,-2) and $C(0,$	-5,1) is
	1) $\frac{\sqrt{26}}{7}$	2) $\sqrt{\frac{26}{7}}$	3) $\frac{2\sqrt{2}}{7}$	6	4) $\frac{3\sqrt{26}}{7}$

12.	Let $\bar{a}, \bar{b}, and \bar{c}$ be non zero	vectors such that $(\bar{a} \times$	$(\overline{b}) \times \overline{c} = \frac{1}{3} \overline{b} \overline{c} \overline{a}$. If θ	is the acute angle between the
	vectors \overline{b} and \overline{c} , then $\sin \theta$) is	C C	
	1) $\frac{1}{3}$	2) $\frac{2\sqrt{2}}{3}$	3)2/3	4) $\frac{\sqrt{2}}{3}$
13.	$\overline{a}.\overline{a^{1}} + b.\overline{b^{1}} + c.\overline{c^{1}}$ is 1) 0	2)1	3)2	4)3
14.	If $0 < \alpha, \beta < \frac{\pi}{4}, \cos(\alpha + \beta)$	$=\frac{4}{5},\sin(\alpha-\beta)=\frac{5}{13},t$	hen $\tan 2\alpha$ is	
	1) $\frac{33}{56}$	2) $\frac{56}{33}$	3) $\frac{16}{63}$	4) $\frac{63}{16}$
15.	$\tan^6 \frac{\pi}{9} - 33 \tan^4 \frac{\pi}{9} + 27 \tan^2$	$\frac{\pi}{9}$ is		
	1)Tan $\frac{\pi}{3}$	2) $\tan^2 \frac{\pi}{3}$	3) $\tan \frac{\pi}{6}$	4) $\tan^2 \frac{\pi}{6}$
16.	If $y = \sec^2 \theta + \cos^2 \theta, \theta \neq 0$,	then		
17.	1)y = 0 $\cos 2x + a \sin x = 2a - 7$ ha	2) $y \le 2$ s a solution if	3)y≥-2	4)y>2
18.	1) $a = 0$ 2 If a,b,c are +ve then $\tan^{-1} $	$\frac{1 \le a \le 2}{\frac{a(a+b+c)}{bc}} + \tan^{-1}\sqrt{\frac{b}{bc}}$	$\frac{3}{p(a+b+c)} 2 \le a \le 6$ $\frac{1}{a} + \tan^{-1} \sqrt{\frac{c(a)}{a}}$	$\frac{4) \ 6 \le a \le 8}{\frac{+b+c)}{ab}}$ is
	1)0 2) π		3) $\pi/2$	4) $\pi/4$
19.	If in a $\triangle ABC$, $r_3 = r_1 + r_2 + r_3$, then $\angle A + \angle B$ is		
20.	1) 120 [°] 2) 10 [°] The angles of a triangle are	3^{0} 3 in the ratio 3:5:10.	B) 90 ⁰ Then the ratio of the smaller	4) 80° allest side to the greatest side
21.	1) $1: \sin 10^{\circ}$ 2) $1:2$ $0(0,0), A(4,0), B(0,6)$ are ΔPOA , then the locus is	$2\sin 10^{\circ}$ three points. If P is a point	3) 1: $\cos 10^{\circ}$ oint such that area of Δ	4) $1:2\cos 10^{\circ}$ <i>POB</i> is twice the area of
22	1) $4x^2 - 6y^2 = 0$ A line L has intercepts a an through a fixed angle. Then	2) $3x^2 - 4y^2 = 0$ d b on the coordinates in the same line has inter	3) $9x^2 - 16y^2 = 0$ axes. Keeping the originates p and q on the net provide the originates of the second	4) $4x^2 - 9y^2 = 0$ in fixed, the axes are rotated ew axes, then
	1) $a^2 + p^2 = b^2 + q^2$ 22	2) $a^2 + b^2 = p^2 + q^2$	3) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$	4) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$
23.	If a line l passes through ((k, 2k), (3k, 3k) and (3, 1)	1), $k \neq 0$, then the distant	ice from the origin to the line l
	is		2	1
	1) $\frac{4}{\sqrt{5}}$ 2) $\frac{3}{\sqrt{5}}$	5	3) $\frac{2}{\sqrt{5}}$	4) $\frac{1}{\sqrt{5}}$
24.	If p and q are the perpendic	ular distances from the	e origin to the straight l	ines

	$x \sec \theta - y \cos ec\theta =$	$= a \ and \ x\cos\theta + y\sin\theta =$	$=a\cos 2\theta$ then	
	1) $4p^2 + q^2 = a^2$	2) $p^2 + q^2 = a^2$	3) $p^2 + 2q^2 = a^2$	4) $4p^2 + q^2 = 2a^2$
25.	The number of line	es that are parallel to $2x + \frac{1}{2}$	+6y-7=0 and have an	intercept 10 between the coordinate
	axes is			
	1) 1	2) 2	3) 4	4) infinitely many
26.	If two lines represe	ented by the equation ax^3	$b^{3} + bx^{2}y + cxy^{2} + dy^{3} = 0$	are at right angles then
	$a^2 + d^2 + ac + bd$ i	S		
	1)-1	2) 0	3) 1	4) $ab+cd$
27.	The circumcentre of	of the triangle formed by	the points $(1, 2, 3), (2, 3, 1)$	(3,1,2) is
	1) (2,2,2)	2) (1,1,1)	3) (2,-2,1)	4) (-1,2,2)
28.	If the direction cos	ines of two lines are such	h that $l + m + n = 0, l^2 + m$	$n^2 - n^2 = 0$ then angle between
	them is			
	1) $\frac{\pi}{2}$	2) $\frac{\pi}{2}$	$(3) \frac{\pi}{2}$	4) $\frac{\pi}{2}$
	2	2) 3	<i>5)</i> 4	6
29.	The projection of the	he join of the two points	(1,4,5)(6,7,2) on the lin	e whose d.r's are (4,5,6)
	1) $\frac{13}{$	2) 7/6	3)21	4) 7/9
	´√77	,	- /	,
20	$\tan\left[e^2\right]x^2 - \tan\left[e^2\right]x^2$	$n\left[-e^2\right]x^2$.		
30.	$\lim_{x \to 0} \frac{Lt}{\sin^2 x}$	<u> </u>		
	1) 0	2) 8	3) 15	4) 20
21	If $f(x) =$	$(a^{x}-1)^{3}$ is as		
51.	$\frac{11}{1} \int (x) - \frac{1}{\sin(x \log x)}$	$\frac{1}{a)\log(1+x^2\log a^2)}$ is co	finitious at x=0 then $I(0)$	15
	1)log a	2) 2 log a	3) $\log a^{-1}$	4) $\log \sqrt{a}$
32.	If $f(x) = \frac{1}{x}$	then $f\left(\frac{2}{2}\right)$ is d	iscontinuous at x=	
	$x^2 - 17x$	+66 (x-2)		
	1) $2, \frac{7}{2}, \frac{25}{2}$	2) $2, \frac{8}{2}, \frac{24}{2}$	3) 2, $\frac{7}{2}$, $\frac{24}{24}$	4) None
	3,11	3,11	3,11	1) 10110
33.	If g is inverse of a	function f and $f^{1}(x) = -$	$\frac{1}{x}$, then $g^{1}(x)$ is equ	al to
	0	5 ()	$1+x^3$	
	1) $\frac{1}{1 + (1 + 1)^5}$	2) $1 + (g(x))^5$	3) $1+x^5$	4) $5x^4$
	$1+(g(x))^3$	-		
34.	If $\sqrt{1-x^6} + \sqrt{1-y^6}$	$\overline{b} = a^3(x^3 - y^3)$ then $\frac{dy}{dx}$ is		
	1^{2} 1 1^{6}	$\frac{dx}{1-x^6}$	$1^2 \sqrt{1-v^2}$	$\frac{1}{1}$
	1) $\frac{x}{2} \sqrt{\frac{1-x}{1-6}}$	2) $\frac{y}{2}\sqrt{\frac{1-y}{1-6}}$	3) $\frac{x}{\sqrt{1-y}} \sqrt{\frac{1-y}{1-y}}$	4) $\frac{y}{1-x} \sqrt{\frac{1-x}{1-6}}$
	$y^{-} \vee 1 - y^{-}$	$x^{-} \vee 1 - x^{-}$	y y y = x	$x^{-} \sqrt{1-y^{-}}$
35.	If $x = \cos\theta + \theta \sin\theta$	θ , y = sin $\theta - \theta \cos \theta$ then	$\frac{d^2y}{2}$ is	
		•	dx^2	

36. The area of the triangle formed by the normal to the curve $x = e^{\sin y}$ at (1,0) with the coordinate axes is 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) $\frac{3}{4}$ 4) 1

- 37. Gas is being pumped into a spherical balloon at the rate of $30 ft^3 / min$. Then the rate at which the radius increases when it reaches the value of 15ft is
- 1) $\frac{1}{30\pi} ft / \min$ 2) $\frac{1}{15\pi} ft / \min$ 3) $\frac{1}{20} ft / \min$ 4) $\frac{1}{25} ft / \min$ 38. The condition that $f(x) = ax^3 + bx^2 + cx + d$ has no extreme value is 1) $b^2 = 4ac$ 2) $b^2 = 3ac$ 3) $b^2 < 3ac$ 4) $b^2 > 3ac$ 39. The constant c of Lagrange's theorem for $f(x) = \frac{x}{x-1} in[2,4]$ is
 - 1) 1 2) $\sqrt{3}$ 3) $\sqrt{3}+1$ 4) $\sqrt{3}+2$ The maximum area of the rectangle that can be inscribed in a circle of radius r is
- 40. The maximum area of the rectangle that can be inscribed in a circle of radius r is $\frac{1}{2}$
- 1) πr^2 2) r^2 3) $\frac{\pi r^2}{4}$ 4) $2r^2$
- 41. $\operatorname{Tan}(i \log\left(\frac{a-ib}{a+ib}\right))$ is

1)ab

2) $\frac{2ab}{a^2 - b^2}$ 3) $\frac{a^2 - b^2}{2ab}$

imum value of
$$|z|$$
 when z satisfies the condition $|z + \frac{2}{z}| = 2$ is

4) $\frac{2ab}{a^2+b^2}$

42. The maximum value of |z| when z satisfies the condition $\left|z + \frac{2}{z}\right| = 2$ is

1) $\sqrt{3} - 1$ 2) $\sqrt{3}$ 3) $\sqrt{3} + 1$ 4) $\sqrt{2} + \sqrt{3}$ The value of $amp(ia) + amp(ia^2)$ is

43. The value of $amp(i\omega) + amp(i\omega^2)$ is

1)0
2)
$$\frac{\pi}{2}$$

3) π
4) $-\pi$
44. If $x_n = \cos\left(\frac{\pi}{2^n}\right) + i\sin\left(\frac{\pi}{2^n}\right)$, then $\prod_{n=1}^{\infty} x_n$ is
1) -1
2) 1
3) $\frac{1}{\sqrt{2}}$
4) $\frac{i}{\sqrt{2}}$

- 45. If $x^2 + bx + a = 0$, $ax^2 + x + b = 0$ have a common root and the first equation has equal roots, then $2a^2 + b$ is 1)0 2)1 3)-1 4)2
- 46. The range of $\frac{x^2 2x + 9}{x^2 + 2x + 9} (x \in R)$ is 1) $(-\infty, 0] \cup [1, \infty)$ 2) $\left[\frac{1}{2}, 2\right]$ 3) $(-\infty, -2/9) \cup (1, \infty)$ 4) $(-\infty, -6] \cup [-2, \infty)$

47.	If α, β, γ are the r	oots of the equation $2x^3$	$-3x^2 + 5x - 7 = 0 $ then	$\sum \alpha^2 \beta^2$ is
	1) $-\frac{17}{4}$	2) $\frac{17}{4}$	3) $\frac{-13}{4}$	4) $\frac{13}{4}$
48.	The sum of two ro	ots of the equation $x^4 - x^4$	$x^3 - 16x^2 + 4x + 48 = 0$ is	s zero. If $\alpha, \beta, \gamma, \delta$ are the roots of
	this equation, ther	$\alpha^4 + \beta^4 + \gamma^4 + \delta^4$ is		
	1) 123	2) 369	3) 132	4) 396
49.	All the numbers th	hat can be formed, using	the digits 1,2,3,4,5 are a	arranged in the increasing order of
	magnitude, then th	he rank of 35241 is		
~0	1)70	2) 135	3) 275	4) 584
50.	The number of pos	sitive integral solutions o	t abc = 30 is	() 10
51	1) 30 The greatest numb	2) 21 er of points of intersectio	3/8 on of 8 lines and 4 circle	4) 10
51.	1) 64	2) 92	3)104	4) 128
	1) 01	(r+1)	$(2)^{10}$	() 120
52.	The term independ	lent of x in $\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}\right)$	$-\frac{x-1}{x-x^{1/2}}$ is	
	1) 210	2) 310	3) 4	4) 120
53.	If $\alpha = \frac{5}{2!3} + \frac{5.7}{3!3^2}$	$+\frac{5.7.9}{4!3^3}++\infty$, then α^2	$^{2}+4\alpha$ is	
	1) 21	2) 23	3) 25	4) 27
54.	If $\frac{x^4}{(x^2+1)(x-2)}$	$= f(x) + \frac{Ax+B}{x^2+1} + \frac{C}{x-2},$	then $f(14) + 2A - B =$	
	1) 5C	2) 4C	3) 6C	4) 7C
55.	Mean of 100 item	ns is 49. It was discovered	d that three items which	should have been 60,70,80, were
	wrongly read as 4	40,20,50 respectively, the	en the correct mean is 2250	4) 90
56	1) 48 $\Lambda M = 44$ Median	2) 82.5 -42 then mode is	3) 50	4) 80
50.	1) 39	2) 36	3) 38	4) 40
57.	There are 20 cards	s.10 of these cards have t	he letter 'I' printed on t	hem and the other 10 cards have the
	letter 'T' printed of	on them. If three cards ar	e picked up at random a	and kept in the same order, the
	probability of mal	king ward IIT is		
	1)4/27	2) 5/38	3) 1/8	4) 9/80
58.	Mr. A is called for	r 3 interviews, there are 5	candidates at the first	interview,4 at the second and 6 at the
	atleast one post is	ion of each candidate is e	equally likely, then the p	brodability that A will be selected for
	1) $1/2$	2) 1/3	3)1/4	4)1/9
59.	A box contains 24	identical balls of which	12 are white and 12 bla	ck. The balls are drawn at random
	from the box one time on 7 th draw is	at a time with replacements	nt. Then the probability	that a white ball is drawn for the 4 th
	1) 5/64	2) 27/32	3) 5/32	4) 1/2
60.	At a telephone en	quiry system the number	of phone calls regardin	ng relevant enquiry follow Poission

FOR ENGINEERING ASPIRANTS

	1) $\frac{1}{2}\sin 2x$	2) $\frac{-1}{2}\sin 2x$	3) $\frac{1}{2}\sin^2 2x$	4) $-\sin^2 x$
74.	If $\int f(x)dx = \psi(x)$	then $\int x^5 f(x^3) dx =$	2	
	1) $\frac{1}{3}x^{3}\psi(x^{3}) - \int x^{2}\psi(x^{3}) dx$	$v(x^3)dx + c$	$2) \ \frac{1}{3} \bigg[x^3 \psi(x) \bigg]$	$(x^3) - \int x^3 \psi(x^3) dx \Big] + c$
	3) $\frac{1}{3} \Big[x^3 \psi(x^3) - \int x^2 \psi(x^3) \Big]$	$\psi(x^3)dx\Big]+c$	$4) \frac{1}{3} x^3 \psi(x^3)$	$(-3\int x^3\psi(x^3)dx+c)$
75.	If $I_1 = \int_{0}^{1} 2x^2 dx$, $I_2 = \int_{0}^{1} 2x^2 dx$	$2^{x^3} dx, I_3 = \int_{1}^{2} 2^{x^2} dx$ and I_4	$\int_{1}^{2} 2^{x^{3}} dx$ then	
	1) $I_1 > I_2$	2) $I_2 > I_1$	3) $I_3 > I_4$	4)None
76.	$\int_{0}^{2} x^{2} [x] dx =$			
	1) 5/3	2) 7/3	3) 8/3	4) 4/3
77.	The area bounded by	the curves $y = x - 1$ and	y = - x + 1 is	
	1) 1	2) 2	33) $2\sqrt{2}$	4) 4
78.	The differential equat axis is	ion of the family of parab	olas with vertex at $(0, -$	1) and having axis along the y-
	1) $xy^1 + y + 1 = 0$	2) $xy^1 - 2y - 2 = 0$	3) $xy^1 - y - 1 = 0$	4) $yy^1 + 2xy + 1 = 0$
79.	The solution of tan y	$\frac{dy}{dx} = \sin(x+y) + \sin(x-y)$	y) is	
	1) sec $y = 2\cos x + c$	$2) \sec y = -2\cos x + c$	3) $\tan y = -2\cos x + c$	4) $\sec^2 y = -2\cos x + c$
80.	$x^2 y - x^3 \frac{dy}{dx} = y^4 \cos x$	$x then x^3 y^{-3} =$		
	1) $\sin x$	2) $2\sin x + c$	3) $3\sin x + c$	4) $3\cos x + c$

PHYSICS

81. μ = A + B/λ₁ + C/λ₂ is dimensionally correct. The dimensions of A, B and C respectively. Where μ, A, B, C are constant, λ is wave length of wave 1) no dimensions l, l² 2) l², no dimensions, l 3) l, l², no dimensions 4) l, no dimensions, l²
82. If P = i+2j+6k its direction cosines are

1)
$$\frac{1}{41}$$
, $\frac{2}{41}$ and $\frac{6}{41}$ 2) $\frac{1}{\sqrt{41}}$ and $\frac{6}{\sqrt{41}}$ 3) $\frac{3}{\sqrt{41}}$, $\frac{8}{\sqrt{41}}$ and $\frac{7}{\sqrt{41}}$ 4) 1, 2 and 6
If $S_n = 2 + 0.4n$ find initial velocity and acceleration

83.

1) 2.2 units 2) 0.4 units 3) 2.1 units 4) 0.3 units 84. A missile is fired for maximum range with an initial velocity of $20ms^{-1}$, the range of the missile is $(g = 10m/s^2)$

	1) 50 m	2) 60 Cm	3) 20 m	4) 40 m	
85.	A 60kg man is percentage cha	inside a lift which is n inge in weight is	noving up with an acceler	ation of $2.45ms^{-2}$. The apparent	
	1) 20%	2) 25%	3) 50%	4) 75%	
86.	A force of 150	N produces an accelera	tion of $2ms^{-2}$ in a body	and a force of 200N produces an	
	acceleration of	$3ms^{-2}$. The mass of the	he body and the coefficie	nt of kinetic friction are	
	1) 50kg:0.1	2) $25kg: 0.1$	3) $50kg:0.5$	4) $50kg: 0.2$	
87.	A body starts fr 1^{st} , 2^{nd} , 3^{rd} secon	com rest and moves winds of its journey is	th uniform acceleration.	The ratios of kinetic energies at the en-	d of
	1) 1:8:27	2) 1:2:3	3) 1:4:9	4) 3:2:1	
88.	A plastic ball fa 2.4S,then e=	alling from a height 4.9	Om rebounds number of t	imes. If total time for second collision	is
	1) 0.3	2) 0.4	3) 0.7	4) 0.6	
89.	A stationary wh taken by it to co	eel starts rotating abou omplete 77 rotations is	tt is own axis at uniform	angular, acceleration $8rad / s^2$. The til	me
	1) 5.5 sec	2) 7 sec	3) 11sec	4) 14 sec	
90.	An electric moto	or exerts a constant to	rque 5Nm on a fly wheel	, it is rotated at the rate of 4701 pm . T	The
	power of motor	is			
01	1) 110 watt	2) 150 watt	3) 220 watt	. 4) 300 watt	
91.	Intensity of gra	vitational field inside i	the hollow spherical shell	1S (1) =====	
02	The displacement	2) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5) Infaximum is $x = 3\sin(20\pi t) + 4\cos(2\pi t)$	(20 πt) cm Its amplitude of oscillation	ic
92.	1) 2 are	2) 4 arm	$x = 3 \sin(20\pi t) \pm 4 \cos(20\pi t)$	$(20\pi i)cm$. Its amplitude of oscillation	1 15
	1) 3 cm	2) 4 cm	5) 5 cm	4) 25 cm	
93.	For a body is SH is	HM the velocity is give	en by the relation $v = \sqrt{1}$	$44 - 16x^2 ms^{-1}$. The maximum accelera	ıtion
	1) $12m/s^2$	2) $16m/s^2$	3) $36m/s^2$	4) $48m/s^2$	
94.	The stress versus	s strain graphs for wire	es of two materials 'A' an	d B are as shown in the figure. If	
	Y_A and Y_B are the	e young's moduli of th	ne materials, then		
		Itess	В		
		57 60° 30°			
	1) $V = 2V$	Strai 2) $V = V$	n 3) $V = 2$	$A = \frac{1}{2} V = \frac{1}{2} V$	
05	$1 \mathbf{J} \mathbf{I}_8 - \mathbf{Z} \mathbf{I}_A$	$2) I_A - I_B$	3 I I I I I I I I I I I I I I I I I I I	$\mathbf{J}_A = \mathbf{J}_A - \mathbf{J}_B$	•,

95. An incompressible liquid flows through a horizontal tube L,M,N as shown in the figure. Then the velocity 'V' of the liquid through the tube N is

		L	∼ 4 ms ⁻¹	
	($2A$ 4 ms^{-1} A		
		N		
	1) $1ms^{-1}$	2) $2ms^{-1}$	3) $4.5ms^{-1}$	4) $6ms^{-1}$
96. 7	The viscos resistance	e of a tube to liquid flow is	RR. Its resistance for a	harrow tube of same length and $1/3$
1	times radius is			
07	1)R/3	2) 3R	3)27 R	4) 81 R
97.	scale is	es differ by 25 degree on Co	elsius scale, the differenc	e of temperature on fahren heat
	1) 65°	2) 45°	3) 38°	4) 25 [°]
98.	Heat given to a sys	tem is 35 joules and work	done by the system is 15	joules. The change in the internal
	energy of the syste	em will be		
	1) $-50J$	2) 20J	3) $30J$	4) 50 <i>J</i>
99. <i>'</i>	The efficiency of a	heat engine if the tempera 20.05	ture of source $227°c$ and	1 that of sink is $27^{\circ}c$ nearly
100	1) 0.4 The temperature a	2) U.J t which the r m s speed of (3) U.O ovvgen molecules equal t	4) 0.7
100.	molecules at 23°	a which the 1.111.5 speed of (oxygen molecules equal (the rims speed of earboin dioxide
	1) $\pm 91.2^{\circ}c$	$2) -91 2^{0}c$	3) 112 $2^0 c$	$(4) -112 2^{\circ}c$
101.	When a string fixe	ed at its two ends vibrates in	n 1 loop . 2 loops.3 loops	and u loops, the frequencies are in
	the ratio			
	1) 1:3:5:7	2) 1:2:3:4	3) 1:5:9:13	4) 3:7:11:15
102.	For a glass prision the prism is	n the angle of minimum de	viation is equal to the ang	gle of the prision. Then the angle of
	1) 45°	2) 30°	3) 60°	4) 90°
103.	The limit of resol	ution of micro scope, if the	numerical aperture of m	icroscope is 0.12 and the
	wavelength of light	ght used is 600Nm is		-
	1) 0.3 <i>µm</i>	2) 1.2µm	3) 2.5 <i>µm</i>	4) 3 <i>µm</i>
104.	A proton of mass	'm' charge 'e' is released t	from rest in a uniform ele	ectric field of strength 'E'. The
	time taken by it to	o travel a distance 'd' in the	e field is	
	1) $\sqrt{2de}$	2) $2dm$	$\frac{2dE}{2}$	(2Ee)
	mE	²⁾ √ Ee	⁵⁾ √ me	$\sqrt{1} \sqrt{dm}$
105.	A charge of 5 C i	s placed at the center of a s	pherical gaussian surface	of radius 5 cm. The electric fill
	through the surface	ce is $\frac{1}{E_0}$ times of		
	1) $0.1N m^2 / C^2$	2) $0.5Nm^2 / C^2$	3) $1Nm^2 / C^2$	4) $5Nm^2/C^2$
106.	The equivalent c	apacity between the points	X and Y in the circuit wi	th $C = 1\mu F$
	=			

1) 0.69mA 2) 6.9mA 3) 69mA 4) 9.6mA In the boolean algebra, the following one which is not equal to A is 119. 2) A + A3) A.A 4) A + A1) A.A 120. In an amplitude modulated wave for audio frequency of 500 cycle /second, the appropriate carrier frequency will be 1) 50cycles/second 2) 100cycles/second 3) 500cycles/second 4) 50000cycles/second

CHEMISTRY

121. The graph between variation of probability density $\psi^2(r)$ and distance of the electron from the nucleus, r is shown below. This represents

1)1s-orbital 2)2s-orbital 3)3s-orbital 4)4s-orbital 122. For the redox reaction $MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$, the correct coefficient of the reactants for the balanced reaction are respectively 1) 2, 5, 16 2) 16, 3, 12 3) 15, 16, 12 4) 2, 16, 5

123. If the bond order in c_2 is 'x' then bond order in B_2 and O_2 , respectively are

1)
$$\frac{1}{2}x, 2x$$
 2) x, x 3) $\frac{1}{2}x, x$ 4) $x, 2x$

124. An alkene $X(C_4H_6)$ on reaction with HBr gave $Y(C_4H_9Br)$. Reaction of Y with benzene in the presence of anhydrous gave Z which is resistant to oxidation with $KMnO_4KOH$. What are X,Y,Z respectively?

- In f-block elements ------ orbitals are progressively filled by the electrons 134. 1) 3l and 4l 2) 4*l* and 5*l* 3) 5*l* and 6*l* 4) 6l and 7l
- 135. Match the following based on valence bond theory

		Hybridisation		Geometry		Complex structure
	A	sp ³	i.	Square planar	р.	$\left[Fe(CN)_6\right]^{3-}$
	B	$d^2 sp^3$	ii.	Tetrahedral	q.	$(ZnCl_4)^{2-}$
	С	dsp^2	iii	Octahedral	r.	$\left[\left(Ni(NH_3)_4\right]^{2+}\right]$
					s.	$\left[Ag(CN)_2\right]^-$
1) $(A - ii - q), ($	<i>B</i> –	iii - p), (C - i - r)		2) (A-1	ii-q	(B-iii-r), (C-i-s)
3) $(A - i - q), (A - i - q), $	B-i	(ii-p), (C-ii-r)		4) $(A - i)$	i-r),	(B-iii-s), (C-i-q)

136. At T(K) the equilibrium constant for the reaction $aA(g) \square bB(g)$ is K_c . If the reaction takes place in the following form $2aA(g) \square 2bB(g)$, its equilibrium constant is K_{c}^{1} . The correct relation ship between K_c and K_c^1 is

1)
$$K_{c}^{1} = (K_{c})^{2}$$
 2) $K_{c}^{1} = (K_{c})^{1/2}$ 3) $K_{c}^{1} = (K_{c})^{-1}$ 4) $K_{c}^{1} = K_{c}$

The crystal structure of an element has fcc lattice. If the edge length of the crystal is 4 A. What is the 137. atomic weight of the element. If the density of the crystal is $11.21 \text{g} \text{ cm}^3$ ($N_A = 6.023 \times 10^{23} \text{ mol}^{-1}$) 1)63.5 2) 85.5 3)108.0 4)197.0 In water, which of the following gases has the highest Henry's law constant at 293K? 138. 3) He 1) N_{2} 2) O_{2} 4) H_{2}

139. For a first order reaction the concentration of reactant was reduced from $0.03molL^{-1}$ to $0.02molL^{-1}$ in 25min. What is the rate($(in molL^{-1})$?

- 1) 6.667×10^{-6} 2) 4×10^{-4} 3) 6.667×10^{-4} 4) 4×10^{-6}
- 140. Compounds A and B react according to the equation $2A(g) + B(g) \rightarrow 2C(g) + D(g)$. The initial rate of formation was determined at different initial concentrations of A and B. The following results were obtained. The rate law for this reaction may be ------

Exp.	Initial(A)	Initial(B)	Initial rate of formation of C
No			
1	0.1	0.1	6×10 ⁻³
2	0.3	0.2	7.2×10^{-2}
3	0.3	0.4	2.88×10^{-1}
4	0.4	0.1	2.4×10^{-2}

1) $Rate = k[A]^2[B]$ 2) $Rate = k[A][B]^2$ 3) Rate = k[A][B] 4) $Rate = k[A]^2[B]^0$

H

4)

Δ + A

141. Identify A and B is the following reactions

142. Identify B in the given reaction sequence

143. Identify 'X' in the following reaction

144. Arrange the following in the correct order of their acidic strength

1) III > IV > I > II 2) IV > III > I > II 3) II > I > IIV > III > II145. Which of the following polymer is biodegradable?

1)Nylon-6,62)Nylon-2-nylon-63) Mealamine polymer4)Nylon-6146.Which of the following structure of proteins represents its constitution?

1)Secondary structure 2)Quatermary structure 3)Primary structure 4)Tertiary structure 147. Match the following

List-I	List-II
A. Beri-Beri	I. Riboflavin
B. Scurvy	II. Thiamine
C. Cheilosis	III. Pyridoxine
D. Rickets	IV. Ascorbic acid
	V. Vitamin D

The correct answer is

1) $A - III, B - IV, C - III, D - V$	
3) $A - III, B - V, C - I, D - II$	
The mass % of carbon in $C_{57}H_{110}O_6$	is

- 1)57.96 2) 62.35
- 2) A II, B IV, C I, D V4) A - III, B - V, C - IV, D - II
- 3) 73.45 4) 76.85

149. Consider the reactions

148.

152. Match the following

	List I		List II
А	Resonance	i.	$c = c + H^{\oplus} \xrightarrow{c} - c + H^{\oplus}$
В	Inductive effect	ii.	$H - CH_2 - CH_2 \longleftrightarrow H_2 \longrightarrow H CH_2 - CH_2$
С	Electromeric effect	iii.	C_6H_6
D	Hyperconjugation	iv.	$CH_3 \rightarrow CH_3 + Z$
		v)	$CH_3 - CH_2 - CH_2Cl$

The correct answer is

- A B C D
- 1) II I IV III
- 2) III V I II
- 3) I III II IV

153. The spin only magnetic moments of the complexes $[Mn(CN)_6]^{3-}$ and $[Co(C_2O_4)_3]^{3-}$ are respectively 1)2.84,0 BM 2) 0,0 BM 3) 0, 1.2 BM 4) 1, 2 BM

- 154.The products formed when borax dissolves in water is/are1) $NaOH, H_3BO_3$ 2) $Na_2 \begin{bmatrix} B_4O_5(OH)_4 \end{bmatrix}$ 3) NaH, B_2O_3 4) $B_2H_6, NaOH$
- 155. Which statement about noble gases is not correct? 1) 'Xe' forms XeF_6 under suitable conditions 2)'Ar' is used in electric bulbs 3)The number of lone pair of electrons present on Xe in XeF_2 is 3

4) 'He' has the highest boiling point among all the noble gases

- 156. Which one of the following methods is used to prepare carbon monoxide on commercial scale? 1)Dehydration of formic acid with conc. H_2SO_4
 - 2) Direct oxidation of C in limited supply of oxygen
 - 3) Passing steam over hot cake
 - 4) Heating lime stone
- 157. Match the following

	List-I((process)	List_II(catalyst)	
	A. Ostwald's process	I. No	
	B. Lead chamber process	II. Fe	
	C. Deacon's Process	III. Rh	
	D.Haber's process	IV. CuCl ₂	
l) 4	$\overline{A-IV, B-I, C-II, D-III}$	2) A-II, B-III, C-IV, D	-1
3) 4	A - III, B - I, C - IV, D - II	4) $A - III, B - IV, C - I, D -$	- 11

158. The O-H bond length in H_2O in gas phase is

	1) 95.7 pm	2) 90.2 pm	3) 104.5pm	4)	115.5 pm
159.	The set of amphoteric	oxides among	$ZnO, TIO_3, In_2O_3, B_2O_3, PbO, SnO$	$_2$ is	

1) ZnO, TIO_3, PbO 2) ZnO, SnO_2, PbO 3) ZnO, In_2O_3, SnO_2 4) ZnO, In_2O_3, PbO

- 160. $A \rightarrow$ products, is a first order reaction. The time required to decompose A to half its initial amount is 60 minutes. The rate constant of the reaction is
 - 1) 1.05×10^{-2} 2) 1.15×10^{-2} 3) 1.25×10^{-4} 4) 1.92×10^{-4}

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

KEY SHEET

MATHS									
01	02	03	04	05	06	07	08	09	10
1	2	3	2	1	2	1	1	1	4
11	12	13	14	15	16	17	18	19	20
4	2	4	2	2	4	3	2	3	4
21	22	23	24	25	26	27	28	29	30
3	3	4	1	2	2	1	2	1	3
31	32	33	34	35	36	37	38	39	40
4	3	2	3	2	2	1	3	3	4
41	42	43	44	45	46	47	48	49	50
2	3	3	1	1	2	1	2	3	2
51	52	53	54	55	56	57	58	59	60
3	1	2	1	3	3	2	1	3	2
61	62	63	64	65	66	67	68	69	70
3	3	2	2	4	3	1	2	3	1
71	72	73	74	75	76	77	78	79	80
4	2	2	1	1	2	2	2	2	3
				PHY	SICS	<u></u>			
81	82	83.	84	85	86	87	88	89	90
4	2	1	4	2	1	3	3	3	3
91	92	93	94	95	96	97	98	99	100
4	3	4	4	4	4	4	2	1	2
101	102	103	104	105	106	107	108	109	110
2	3	4	2	4	1	4	3	4	1
111	112	113	114	115	116	117	118	119	120
3	3	3	2	4	1	2	2	3	4
CHEMISTRY									
121	122	123	124	125	126	127	128	129	130
2	1	3	1	2	4	4	1	3	1
131	132	133	134	135	136	137	138	139	140

KGCET - 2K25

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

4	1	1	2	1	1	3	3	1	2
141	142	143	144	145	146	147	148	149	150
2	3	4	2	2	33	2	4	3	3
151	152	153	154	155	156	157	158	159	160
1	2	2	1	4	3	3	1	2	4